USN

17MAT31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Engineering Mathematics - III**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Obtain the Fourier series of $f(x) = x(2\pi - x)$ in $0 \le x \le 2\pi$ 1 (08 Marks)

b. Obtain the Fourier series for the function
$$f(x) = \begin{cases} 1 + 4\frac{x}{3} & \text{in } -\frac{3}{2} < x \le 0 \\ 1 - 4\frac{x}{3} & \text{in } 0 \le x < \frac{3}{2} \end{cases}$$
 (06 Marks)

Expand f(x) = 2x - 1 as a Cosine half range Fourier series in 0 < x < 1. (06 Marks)

Obtain the constant term and the coefficients of the first Cosine and Sine terms in the 2 Fourier expansion of 'y' from the table

Ŷ	0	1	2	3	4	5
y	9	18	24	28	26	20

(08 Marks)

Obtain the Fourier series of $f(x) = |x| \text{ in } -\pi \le x \le \pi$.

(06 Marks)

Show that the sine half range series for the function $f(x) = \ell x - x^2$ in $0 < x < \ell$ is

$$\frac{8\ell^2}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \operatorname{Sin}\left(\frac{2n+1}{\ell}\right) \pi x . \tag{06 Marks}$$

Module-2

find the infinite Fourier transform of f(x) and hence evaluate

$$\int_0^\infty \frac{\sin x}{x} dx . \tag{08 Marks}$$

Find the Fourier Cosine transform of e^{-x} (06 Marks)

Solve by using Z-transforms: $y_{n+2} - 4y_n = 0$, given $y_0 = 0$ and $y_1 = 2$. (06 Marks)

Find the Fourier Sine transform of $\frac{e^{-ax}}{x}$, a > 0. (08 Marks)

Find the Z-transform of Sin (3n + 5). (06 Marks)

Find the inverse Z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$ (06 Marks)

17MAT31

Module-3

5 a. Find the coefficient of correlation for the data

X	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

(08 Marks)

b. Fit a straight line to the following data

X7	1.0	<i>C</i> 1	1071	1001	1001	2001
Year	19	01	19/1	1981	1991	2001
Production (in	tons)	3	10	12	10	16

(06 Marks)

c. Compute the real root of $x \log_{10} x - 1.2 = 0$ by Regula – Falsi method. Carry out three iterations in (2, 3).

OR

6 a. Obtain the lines of Regression for the following values of x and y

X	1	2	3	4	5
у	2	5	3	8	7

(08 Marks)

b. Fit an exponential curve of the form $y - ae^{bx}$ for the following data

No. of petals	5	6	7	8	9	10
No. of flowers	133	55	23	7	2	2

(06 Marks)

c. Find a real root of x Sinx + Cosx = 0 near x = π . Correct to four decimal places, using Newton – Raphson method. (06 Marks)

Module-4

- 7 a. Given Sin $45^{\circ} = 0.7071$, Sin $50^{\circ} = 0.7660$, Sin $55^{\circ} = 0.8192$, Sin $60^{\circ} = 0.8660$, find Sin 57° using an appropriate interpolation formula. (08 Marks)
 - b. Use Newton's divided difference formula to find f(4) given the data

	_	_	\rightarrow	
X	U	2	3	6
f(x)	-4	2	14	158

(06 Marks)

c. Using Simpsons $1/3^{\text{rd}}$ rule, evaluate $\int_0^{\pi/2} \sqrt{\cos \theta} \ d\theta$ by dividing $[0, \pi/2]$ in to 6 equal parts.

(06 Marks)

OR

8 a. From the following table find the number of students who have obtained less than 45 marks

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

(08 Marks)

b. Using Lagrange's interpolation formula fit a polynomial of the form x = f(y)

X	2	10	17
У	1	3	4

(06 Marks)

c. Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by Weddle's rule taking seven ordinates.

(06 Marks)

Module-5

- 9 a. Verify Green's theorem in a plane for $\oint_C (3x^2 8y^2) dx + (4y 6xy) dy$, where 'C' is the boundary of the region enclosed by $y = \sqrt{x}$ and $y = x^2$. (08 Marks)
 - b. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)i 2xyj$ taken round the rectangle bounded by the lines $x = \pm a$, y = 0 and y = b. (06 Marks)
 - c. Derive Euler's equation $\frac{\partial t}{\partial y} \frac{d}{dx} \left[\frac{\partial t}{\partial y^T} \right] = 0$. (06 Marks)

OR

- 10 a. Use Gauss divergence theorem to evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ over the entire surface of the region above xy plane bounded by the cone $z^2 = x^2 + y^2$ the plane z = 4 where $\vec{F} = 4xzi + xyz^2j + 3zK$.
 - b. Prove that geodesics of a plane are straight lines. (06 Marks)
 - c. Find the extremal of the functional $\int_0^{\pi/2} (y^2 y^{1^2} 2y \sin x) dx$ under the end conditions $y(0) = y(\pi/2) = 0$. (06 Marks)

* * * * *